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ABSTRACT

Congenital heart disease (CHD) presents a complex etiology involving multifaceted genetic and 
environmental interactions. The global prevalence of CHD approximates 8 per 1,000 live births, with 
elevated rates observed during prenatal periods, attributed to spontaneous pregnancy loss and elective 
terminations. Timely and precise diagnosis remains fundamental for optimal clinical outcomes, 
necessitating collaborative efforts among genetic counselors, obstetric practitioners, and pediatric 
cardiovascular specialists. While conventional diagnostic approaches such as electrocardiography and 
echocardiography continue to serve as cornerstone tools, sophisticated imaging techniques including 
cardiac computed tomography and magnetic resonance imaging are increasingly incorporated into 
clinical practice. Nevertheless, diagnostic challenges persist due to limited clinical recognition, inadequate 
healthcare infrastructure, and scarcity of specialized practitioners, potentially compromising diagnostic 
timeliness. Within this framework, artificial intelligence (AI)—specifically machine learning and deep 
learning technologies—has emerged as a transformative approach in pediatric cardiovascular medicine. 
AI systems demonstrate capability in identifying complex patterns within extensive datasets, thereby 
enhancing diagnostic precision, facilitating risk assessment, and enabling personalized therapeutic 
interventions. Contemporary AI implementations have demonstrated potential in optimizing cardiac 
imaging interpretation, supporting clinical decision-making processes, and forecasting patient outcomes. 
Despite promising developments, AI integration within pediatric CHD management remains constrained. 
Single-institutional studies and the relative rarity of CHD limit data accessibility, emphasizing the necessity 
for multi-center collaborative research initiatives. Additionally, AI-based systems can enhance postoperative 
surveillance, simulate therapeutic approaches, and identify complications through wearable monitoring 
technologies. Such innovations prove particularly valuable in resource-constrained environments where 
pediatric cardiovascular expertise remains limited. This comprehensive review examines the current state, 
existing challenges, and future prospects of AI implementation in pediatric cardiovascular medicine. 
Leveraging AI’s comprehensive potential may revolutionize care delivery pathways, enhance prognostic 
outcomes, and optimize health management for children with CHD.
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Introduction

Congenital heart diseases (CHD) demonstrate 
multifactorial etiology, arising from sophisticated interactions 
between genetic predisposition and environmental 
influences. Literature examining neonatal populations 
reports CHD incidence at approximately 8 cases per 1,000 
live births (1,2). Research evidence suggests elevated 
CHD incidence during prenatal periods, correlating with 
increased rates of spontaneous pregnancy loss and fetal 
demise, alongside elective pregnancy terminations following 
prenatal diagnosis (3). Within this clinical context, genetic 
specialists, gynecological and obstetric practitioners, and 
particularly pediatric cardiovascular specialists must possess 
a comprehensive understanding of CHD risk factors and 
employ timely diagnostic methodologies for effective clinical 
management (4).

Primary diagnostic approaches in pediatric cardiovascular 
medicine following comprehensive clinical evaluation 
encompass electrocardiographic (ECG) and echocardiographic 
(ECHO) assessments (5). However, cardiac computed 
tomography (CT) and cardiac magnetic resonance imaging 
(MRI) are progressively utilized as diagnostic tools in subsequent 
clinical phases (6). Regarding CHD, particularly for prenatal or 
postnatal monitoring, diagnoses are generally established 
through ECHO evaluation when clinical suspicion emerges. 
Nevertheless, timely diagnostic achievement depends upon 
clinical awareness, available hospital infrastructure, and 
accessibility of experienced specialists (7). Navigating these 
diagnostic processes can prove time-intensive for both 
patients and healthcare providers. Furthermore, the broad 
spectrum of conditions and limitations in clinical decision 
support systems for preoperative and postoperative care 
contributes to increased clinician burden.

Through technological advancement, artificial intelligence 
(AI) tools, particularly machine learning (ML) and deep 
learning, have gained increasing prominence in medical 
practice, reflecting their adoption across various scientific 
disciplines. ML utilizes statistical modeling to identify patterns 
within historical data, enabling computational systems to 
predict future scenarios under comparable conditions.

The expanding implementation of AI has been enhanced 
by workforce growth and accumulated expertise within this 
domain. However, the application of by numerous physicians 
and healthcare professionals appears limited to conversational 
AI systems. Nevertheless, with appropriate data integration 
and system training, AI demonstrates substantial potential, 
particularly in areas such as CHD, characterized by significant 

disease variability and numerous diagnostic and therapeutic 
approaches.

Contemporary literature regarding AI applications 
primarily emphasizes developing diagnostic algorithms and 
postoperative monitoring in CHD. The primary challenge 
involves limited availability of large datasets, necessary for 
creating AI algorithms in single-center studies, particularly 
for rare conditions like CHD. Consequently, there is an urgent 
need for multicenter studies or extended data collection 
periods to accumulate sufficient information in this field.

AI is increasingly utilized in clinical applications, including 
diagnosis, monitoring, and treatment of CHDs, contributing 
to notable advances in pediatric cardiovascular medicine. 
The capacity to enhance diagnostic accuracy of imaging 
modalities such as cardiac MRI, echocardiography, cardiac CT 
angiography, and electrocardiography through AI algorithms 
enables more reliable and earlier detection of CHDs in both 
prenatal and postnatal stages.

Recently developed AI-based models are being 
implemented across various subspecialties within pediatric 
cardiology, including screening protocols, physical 
examination findings evaluation, diagnostic process support, 
medical image analysis, prognosis prediction, risk assessment, 
and personalized patient-specific medical approaches. ML 
techniques can also predict complication risk and progression, 
offering opportunities for preventive interventions (8).

However, AI technology integration into comprehensive 
care for children with CHD remains limited in the current 
literature, thereby hindering the full realization of its 
potential in this area. In complex diseases like CHD, the 
diversity of treatment options, especially postoperative 
approaches, can be simulated to create patient-specific 
treatment plans, potentially reducing mortality and morbidity. 
Furthermore, utilizing monitoring or wearable devices during 
postoperative periods can facilitate arrhythmia detection and 
the development of early warning systems for healthcare 
personnel. Additionally, AI can assist by providing relevant 
educational materials for early diagnosis and triage in rural 
areas where specialist healthcare personnel are scarce.

This survey aims to explore challenges and opportunities 
associated with integrating AI technologies into pediatric 
cardiology. Addressing these points will help improve 
healthcare quality and patient outcomes in pediatric 
cardiology.

Types of Machine Learning Models

ML, a computer science subdiscipline, simulates human 
cognitive processes through algorithms designed to learn 
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from data inputs. As a fundamental component of big data 
analytics, ML finds application in diverse fields including 
pattern recognition, computer vision, and biomedical 
research. ML enables computational systems to derive 
insights from data, thereby providing predictive and 
decision-making capabilities without dependence on explicit 
programming protocols (9). This involves training algorithms 
on comprehensive datasets to identify significant patterns 
and iteratively improve performance metrics. Within medical 
applications, ML algorithms emerge as essential tools, capable 
of processing complex datasets to enhance diagnostic process 
precision, personalize therapeutic strategies, and predict 
patient prognoses (10,11).

ML is generally structured around three fundamental 
paradigms: supervised, unsupervised, and reinforcement 
learning models. Supervised learning involves training 
algorithms on datasets where each input is paired with 
a corresponding, predefined output label. This approach 
enables models to infer patterns between input features 
and expected outcomes, allowing for predictions on new, 
unobserved instances. It is widely applied in predictive 
tasks, particularly classification and regression problems. 
While classification models categorize data into distinct 
groups, regression models are used to predict values along a 
continuous spectrum.

Common classification techniques comprise logistic 
regression, decision trees, random forests, support vector 
machines (SVM), K-nearest neighbors (K-NN), naïve Bayes, 
and artificial neural networks. In the context of regression, 
frequently utilized models include linear and polynomial 
regression, ridge, and lasso regression, elastic net, support 
vector regression, and neural networks (12,13).

Unsupervised learning, by contrast, operates on data lacking 
explicit labels, with the goal of uncovering intrinsic structures 
or relationships within the dataset. Key methodologies in 
this category include clustering, dimensionality reduction, 
and mining for association rules. Clustering methods—such 
as K-means and hierarchical clustering—organize similar 
data points based on feature resemblance. Meanwhile, 
dimensionality reduction techniques like Principal Component 
Analysis minimize the feature set while preserving essential 
information content (14).

Reinforcement learning, the third paradigm, centers 
on training an agent to take a series of actions within an 
environment to optimize long-term cumulative rewards (15).

Figure 1 presents various types of ML models, and the 
subsequent section elucidates commonly used predictive 
models.

Figure 1. Types of machine learning
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Data Classification and Predictive Models

Outcome prediction, risk assessment, and customization of 
treatment and follow-up for CHD patients now involve various 
ML models and AI tools, each with distinct advantages and 
limitations. A predictive model constitutes a mathematical 
equation designed to forecast outcomes based on one or 
more input variables. This tool employs data and algorithms 
to predict outcomes. Given a defined set of measured attribute 
values for an object x, the objective is to predict the unknown 
value of another attribute y. The attribute y is designated as 
the “output” or “response” variable, while the set x = {x

n
,···, x

1
} 

constitutes the “input” or “predictor” variables. The essence 
of predictive, also known as machine, learning is to construct 
a prediction function f(x) that approximates y with minimal 
error.

Data classification is a supervised learning method, 
that assigns new observations to one of several predefined 
categories, based on quantitative attribute Emser et al. (16). 
Data classification can be approached through two methods: 
one focuses on creating binary distinctions between two 
classes, assigning labels of 0 or 1 to data items, while the 
other aims to model P(y|x), providing both class labels and 
class membership probabilities. SVM exemplify the former 
approach, whereas logistic regression, decision trees, artificial 
neural networks, and K-NN represent the latter, differing in 
their data approximation methods.

SVM utilize statistical learning theory to estimate model 
performance on new data by considering the characteristics 
of the data and the performance on the training dataset 
performance. They create boundaries between datasets by 
solving complex optimization problems. Different kernel 
functions allow varying levels of model flexibility. Because 
they are founded on statistical principles, these machines 
have been studied extensively. They have demonstrated 
performance comparable to or better than other ML 
algorithms in medical studies. A disadvantage of SVM is that 
classification results only show simple divisions, without 
indicating class membership probabilities (17).

Logistic regression does not require a direct linear 
relationship between the independent and dependent 
variables themselves, but instead assumes linearity between 
the log-odds of the outcome and the predictor variables (18). 
This model is fundamentally based on the concept of odds in 
the context of binary outcomes. When focusing on a specific 
event, its odds are defined as the probability of occurrence 
relative to the probability of non-occurrence. These odds are 
often used to represent the likelihood of an event. The logistic 
regression framework applies the natural logarithm of the 

odds—referred to as the logit—as a linear function of the 
predictor variables.

In the case of a single predictor variable, denoted as XXX, 
the model can be written as:

lnf0(odds)=β0+β1X\ln(\text{odds}) = \beta_0 + \
beta_1Xln(odds)=β0+β1X

where lnf0\lnln denotes the natural logarithm, β0\beta_0β0 
is the intercept, and β1\beta_1β1 represents the coefficient 
for XXX. The coefficient β1\beta_1β1 indicates the change in 
the log-odds of the outcome for each one-unit increase in 
XXX. Since the difference between logarithms corresponds to 
the logarithm of a ratio, exponentiating β1\beta_1β1 provides 
the odds ratio, reflecting how the odds change with a one-unit 
increase in the predictor variable (19).

Decision trees represent a ML technique that creates models 
without requiring specific data requirements or assumptions 
(20). Before examining decision trees, it is essential to establish 
a foundation of terminologies. The root node serves as the 
starting point, initiating dataset division based on features or 
conditions. Decision nodes arise from subsequent root node 
splitting, representing intermediate decisions within the tree 
structure. Conversely, leaf nodes signify terminal points where 
further division is infeasible, denoting final classifications or 
outcomes. A sub-tree, analogous to a subgraph, constitutes a 
specific section of the overall decision tree. Pruning involves 
selective node removal to mitigate overfitting and enhance 
model simplicity. Branches or sub-trees represent distinct 
pathways of decisions and outcomes within the tree.

In hierarchical models such as decision trees, parent nodes 
represent decision criteria or conditions, while child nodes 
denote possible outcomes or subsequent decisions based on 
those criteria. These structures are used to derive solutions by 
analyzing previously resolved instances. The process typically 
begins by dividing the dataset into two subsets: one for training, 
where the tree is constructed, and one for testing, where the 
accuracy of the resulting decisions is validated. Each instance 
in the dataset is described by a set of attributes, one of which 
is selected to guide the decision-making process. All input 
attributes are assigned value categories—discrete attributes 
with limited unique values, form their own categories, while 
continuous or highly varied numeric attributes are grouped 
into defined intervals.

Within the tree, attributes are represented as internal or 
decision nodes, each branching into paths corresponding 
to different value categories. The terminal nodes, or leaves, 
of the tree indicate decision outcomes, effectively mapping 
the predicted class for the decision attribute. To classify a 
new, unseen instance, traversal begins at the root node and 
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proceeds along branches that match the instance’s attribute 
values, until a leaf node is reached, signifying the final 
decision (21).

While binary classification (e.g., positive vs. negative) 
is common, decision trees can also be extended to multi-
class scenarios to accommodate more complex decision 
categories. Early theoretical foundations for decision trees 
were introduced by Clopper and Pearson (22) in 1934 through 
binary decision frameworks. However, practical applications 
in ML gained momentum later. In 1984, Leo Breiman proposed 
the Classification and Regression Tree algorithm, which 
popularized concepts like binary splits and the Gini impurity 
metric—both now standard in decision tree construction (23). 
Subsequently, Quinlan (24,25,26) introduced the ID3 
algorithm in 1986, followed by the improved C4.5 model in 
1993. These innovations paved the way for the integration 
of decision trees into ensemble learning approaches such as 
random forests and boosting techniques, cementing their role 
as foundational tools in modern ML.

The K-NN algorithm is another simple yet effective 
classification technique. It assigns a class to a new data point 
based on the majority class among its k closest neighbors 
in the feature space. Unlike some models, K-NN lacks a 
generalization phase, which may hinder interpretability. 
However, it offers transparency by presenting specific 
training instances that influenced a decision. This case-based 
reasoning is often viewed favorably in medical contexts, as 
it reflects clinical decision-making based on prior similar 
experiences (27).

Naïve and semi-naïve Bayes methods are simpler and 
faster than other classifiers (28). Although often outperformed 
by models like logistic regression or random forests, certain 
models remain popular for tasks such as text classification 
and spam filtering, especially where computational resources 
are limited (29). Naïve and semi-naïve Bayes methods 
utilize conditional probability tables. The decisions made by 
Bayesian classifiers, can be seen as aggregating information 
gains. The formula used to calculate the information needed 
to determine if something belongs to class C explains decisions 
by combining information gains that either support or oppose 
the class. This method works for semi-naïve Bayes as well, 
but it uses combined attribute/value pairs instead of simple 
values. This information gain can be arranged in a table to 
show the evidence for or against a decision (30).

The Application of Machine Learning Methods in 
Congenital Heart Disease

ML models, and AI-driven methods are transforming 
healthcare with innovative approaches to enhance diagnosis, 

treatment, and management of illnesses, particularly 
concerning pediatric cardiac conditions. This section explores 
how AI can contribute to addressing these complex cardiac 
issues. Furthermore, it examines how AI can improve 
diagnostic accuracy and personalize treatments, ultimately 
leading to enhanced outcomes for young patients.

Between 2011 and 2017, Qu et al. (31) conducted research 
at a prominent cardiac center in China, comprehensively 
examining unborn infants for potential cardiac defects via 
ultrasonography. Suspicious cases underwent confirmation 
through echocardiograms conducted by at least two 
pediatric cardiology specialists. The study scrutinized a 
total of 1,127 potential predictors of cardiac anomalies, 
employing an Explainable Boosting Machine to forecast 
defects and evaluating performance using Receiver Operating 
Characteristic curves. Predictors were prioritized based on 
their predictive contribution, and corresponding thresholds 
were established. The study encompassed 5,390 mother-child 
pairs, with the predictive model achieving a 76% accuracy rate. 
Predominantly, the top 35 predictors comprised laboratory 
test results, with only a single predictor originating from 
questionnaire data. The model exhibited an overall accuracy 
of 0.65, with sensitivity and specificity values of 0.74 and 0.65, 
respectively. Maternal uric acid levels, glucose levels, and 
blood clotting efficiency emerged as the most reliable and 
influential predictors of cardiac defects. Threshold analysis 
indicated that elevated uric acid levels, shortened activated 
partial thromboplastin time, and elevated glucose levels were 
the most salient predictors, correlating with 1.17-1.54 times, 
increased risk of cardiac defects. Based on these findings, 
the authors developed an online tool designed to facilitate 
screening and prevention of cardiac defects.

Owens et al. (32) used data from the Statewide Planning 
and Research Cooperative System spanning January 1, 2000, 
to December 31, 2014, to investigate maternal delivery 
hospitalizations and associated neonatal admissions among 
women diagnosed with cardiomyopathy, adult congenital 
heart disease (ACHD), pulmonary hypertension (PH), and 
valvular heart disease. The study employed the International 
Classification of Diseases, Ninth Revision, Clinical Modification, 
to identify cases and capture maternal major adverse cardiac 
events (MACE), neonatal clinical complications, and obstetric 
outcomes. Outcomes were analyzed using multivariate logistic 
regression.

Among the 2,284,044 delivery admissions reviewed, 
3,871 involved women with cardiac conditions: 676 with 
cardiomyopathy, 1,528 with valvular heart disease, 1,367 with 
ACHD, and 300 with PH. Major cardiac events were reported in 
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16.1% of those with heart disease, with the highest incidence 
among patients with cardiomyopathy and PH. Neonatal 
complications were also more frequent among offspring of 
affected mothers, particularly in the cardiomyopathy and PH 
subgroups. Women with heart disease showed a significantly 
elevated risk of neonatal adverse outcomes, and this risk was 
most pronounced in the cardiomyopathy and PH cohorts. 
Independent predictors for neonatal complications included 
preeclampsia, MACE, preexisting diabetes mellitus, and other 
obstetric issues.

In another study, Xu et al. (33) retrospectively examined 
pediatric patients diagnosed with infective endocarditis 
between January 2010 and December 2021 at a single 
institution. Data collected included demographics, clinical 
symptoms, microbiological findings, ECHO data, pre-existing 
cardiac conditions, and outcomes. The study included 
90 children, with 60% having a history of heart disease. 
Staphylococcus aureus emerged as the most commonly 
isolated pathogen, observed more frequently in patients 
without structural heart disease compared to those with 
underlying heart conditions.

ECHO analysis identified vegetations in 88 patients: 41 on 
the left side of the heart, 45 on the right, and 2 cases with 
bilateral involvement. Right-sided vegetations were more 
often seen in patients with heart disease, while left-sided 
vegetations predominated in those without. Embolic events 
were documented in 25 cases, with a higher incidence in 
the non-heart disease group. Spontaneous resolution of 
vegetations occurred in nine patients, and four patients died 
during hospitalization. Logistic regression indicated that 
the absence of structural heart disease and the presence of 
moderate to severe valvular dysfunction were independent 
risk factors for embolic complications.

Babič et al. (34) examined cardiovascular disease, 
encompassing a diverse array of conditions that impair 
heart and vascular function, including coronary artery 
disease, arrhythmias, and congenital or acquired structural 
abnormalities. The term is frequently associated with vascular 
obstructions or stenoses that may precipitate acute events 
such as heart attacks, angina, or cerebrovascular incidents. In 
their study, three datasets were analyzed: the Heart Disease 
Database, the South African Heart Disease Dataset, and 
the Z-Alizadeh Sani Dataset. The team applied various ML 
models, specifically Decision Trees, naïve Bayes, SVM, and 
Neural Networks, for predictive analytics, supplemented by 
descriptive methods based on rule-based association and 
decision logic.

Model performance was evaluated using data from 
multiple sources. For the Cleveland, Hungary, Switzerland, 

and Long Beach VA datasets, classification accuracies were 
reported as 88.09% for Decision Trees, 86.76% for naïve Bayes, 
88.53% for SVM, and 89.93% for Neural Networks. Model 
accuracy rates on the South African dataset were slightly 
lower: Decision Trees achieved 73.87%, naïve Bayes 71.17%, 
SVM 73.70%, and Neural Networks 68.48%. With respect to 
the Z-Alizadeh Sani dataset, the results indicated accuracies 
of 85.38% for Decision Trees, 83.33% for naïve Bayes, 86.67% 
for SVM, and 86.32% for Neural Networks. Based on these 
findings, the researchers concluded that the implemented 
models yielded robust and consistent outcomes, often 
matching or surpassing those found in comparable studies.

In a separate investigation, Pachiyannan et al. (35) 
introduced a novel ML-based framework designed to reduce 
neonatal mortality in cases of CHD. The model processes 
infant medical records to pinpoint critical mortality risk 
factors, thereby supporting timely clinical intervention and 
individualized care strategies for neonates at elevated risk. By 
integrating maternal health history and prenatal indicators, 
the diagnostic tool facilitates accurate evaluation of newborns 
affected by CHD. The Cardiac Deep Learning Model yielded 
encouraging performance metrics, demonstrating a sensitivity 
of 91.74%, specificity of 92.65%, a positive predictive value of 
90.85%, negative predictive value of 55.62%, and a miss rate 
of 91.03%. These findings imply that the model may serve as 
a valuable clinical resource, equipping healthcare providers 
with decision support capabilities to mitigate CHD-related 
neonatal mortality and enhance treatment outcomes.

Lee et al. (36) carried out a retrospective analysis involving 
ECG data from 1,035 pediatric patients aged under five 
at Chang Gung Memorial Hospital in Taoyuan, Taiwan. 
Based on ECG interpretations, patients were grouped into 
five diagnostic categories: normal cardiac anatomy, non-
significant right heart disease, significant right heart disease, 
non-significant left heart disease, and significant left heart 
disease. ECG signals underwent preprocessing via continuous 
wavelet transformation and were then divided into two-
second segments to augment the dataset. Following this, 
transfer learning was implemented using three pre-trained 
deep learning architectures: ResNet-18, InceptionResNet-V2, 
and NasNetMobile. These models were assessed using 
standard classification metrics, including accuracy, sensitivity, 
specificity, F1 score, and the area under the receiver operating 
characteristic curve (AUC-ROC).

Among the evaluated models, ResNet-18 achieved the 
best overall results for identifying clinically significant CHD, 
reaching an accuracy of 73.9%, F1 score of 75.8%, and AUC 
of 81.0%. While InceptionResNet-V2 demonstrated strong 
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performance in detecting left-sided heart abnormalities, it 
required significantly more computational resources.

Notably, the AI models outperformed pediatric 
cardiologists’ interpretations of conventional ECGs. The 
authors highlighted the potential of AI-enhanced ECG analysis 
as a valuable adjunct tool in CHD screening for young children, 
with ResNet-18 emerging as a particularly effective model.

Niyogi et al. (37) examined the transformative role of AI in 
the diagnosis, treatment, and lifelong management of CHD. 
The study addressed recent progress in prenatal detection, 
postnatal intervention, and chronic monitoring, while also 
recognizing limitations such as the lack of standardized 
datasets and ethical complexities. Notable advancements 
include the use of AI in fetal echocardiography and genetic 
screening, facilitating more precise prenatal risk assessment. 
Additionally, the integration of AI into imaging diagnostics 
has improved classification and severity evaluation of 
CHD subtypes. The authors also emphasized the role of AI-
driven clinical decision support systems, which contribute to 
personalized care plans and better prognostic evaluations. 
Remote AI monitoring tools were also noted for their potential 
to detect complications early, supporting long-term patient 
management.

Chen et al. (38) introduced a deep learning–based 
diagnostic system, Congenital Heart Disease diagnosis via 
Electrocardiogram (CHDdECG), designed for the detection 
of congenital heart defects using pediatric ECGs. This 
approach combines automated feature extraction via wavelet 
transformation with selected expert-identified features. 
Trained on a dataset of 65,869 cases, CHDdECG achieved a 
ROC-AUC of 0.915 and a specificity of 0.881 on a real-world test 
set of 12,000 cases. On two external validation datasets (7,137 
and 8,121 cases), the model yielded ROC-AUC scores of 0.917 
and 0.907, and specificities of 0.937 and 0.907, respectively. 
The system outperformed cardiologists in CHD detection, 
with automatically extracted features contributing more 
significantly to model performance than manually selected 
ones. These findings highlight the promise of ECG-based deep 
learning for pediatric CHD screening, offering insights beyond 
conventional diagnostic approaches.

Conclusion

The studies reviewed underscore the significant potential 
of AI to revolutionize cardiovascular medicine by enhancing 
diagnostic precision, enabling personalized treatment 
approaches, and ultimately improving patient outcomes. AI 
algorithms have demonstrated their capability to analyze 
intricate datasets derived from electrocardiograms and 

advanced imaging modalities. This facilitates early and 
accurate detection of critical cardiovascular conditions, 
such as coronary heart disease and congenital heart defects, 
often surpassing the performance of conventional diagnostic 
techniques.

Moreover, decision support systems powered by AI offer 
considerable potential in personalizing treatment plans 
and enhancing the precision of outcome predictions. The 
integration of AI into remote patient monitoring facilitates 
the early identification of clinical complications, allowing 
for prompt intervention and better long-term disease 
management. Collectively, these technological advancements 
are poised to substantially influence healthcare delivery 
by providing clinicians with sophisticated tools to reduce 
cardiovascular-related mortality, improve patient outcomes, 
and support the timely and customized care of individuals at 
elevated risk.

Future research should focus on standardizing datasets, 
addressing ethical considerations, and validating AI models 
across diverse populations to fully realize the transformative 
potential of AI in cardiovascular care.
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