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ABSTRACT

Congenital heart disease (CHD) presents a complex etiology involving multifaceted genetic and
environmental interactions. The global prevalence of CHD approximates 8 per 1,000 live births, with
elevated rates observed during prenatal periods, attributed to spontaneous pregnancy loss and elective
terminations. Timely and precise diagnosis remains fundamental for optimal clinical outcomes,
necessitating collaborative efforts among genetic counselors, obstetric practitioners, and pediatric
cardiovascular specialists. While conventional diagnostic approaches such as electrocardiography and
echocardiography continue to serve as cornerstone tools, sophisticated imaging techniques including
cardiac computed tomography and magnetic resonance imaging are increasingly incorporated into
clinical practice. Nevertheless, diagnostic challenges persist due to limited clinical recognition, inadequate
healthcare infrastructure, and scarcity of specialized practitioners, potentially compromising diagnostic
timeliness. Within this framework, artificial intelligence (Al)—specifically machine learning and deep
learning technologies—has emerged as a transformative approach in pediatric cardiovascular medicine.
Al systems demonstrate capability in identifying complex patterns within extensive datasets, thereby
enhancing diagnostic precision, facilitating risk assessment, and enabling personalized therapeutic
interventions. Contemporary Al implementations have demonstrated potential in optimizing cardiac
imaging interpretation, supporting clinical decision-making processes, and forecasting patient outcomes.
Despite promising developments, Al integration within pediatric CHD management remains constrained.
Single-institutional studies and the relative rarity of CHD limit data accessibility, emphasizing the necessity
for multi-center collaborative research initiatives. Additionally, Al-based systems can enhance postoperative
surveillance, simulate therapeutic approaches, and identify complications through wearable monitoring
technologies. Such innovations prove particularly valuable in resource-constrained environments where
pediatric cardiovascular expertise remains limited. This comprehensive review examines the current state,
existing challenges, and future prospects of Al implementation in pediatric cardiovascular medicine.
Leveraging Al's comprehensive potential may revolutionize care delivery pathways, enhance prognostic
outcomes, and optimize health management for children with CHD.
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Introduction

Congenital  heart  diseases (CHD)  demonstrate
multifactorial etiology, arising from sophisticated interactions
between  genetic predisposition and  environmental
influences. Literature examining neonatal populations
reports CHD incidence at approximately 8 cases per 1,000
live births (1,2). Research evidence suggests elevated
CHD incidence during prenatal periods, correlating with
increased rates of spontaneous pregnancy loss and fetal
demise, alongside elective pregnancy terminations following
prenatal diagnosis (3). Within this clinical context, genetic
specialists, gynecological and obstetric practitioners, and
particularly pediatric cardiovascular specialists must possess
a comprehensive understanding of CHD risk factors and
employ timely diagnostic methodologies for effective clinical
management (4).

Primary diagnostic approaches in pediatric cardiovascular
medicine following comprehensive clinical evaluation
encompass electrocardiographic (ECG) and echocardiographic
(ECHO) assessments (5). However, cardiac computed
tomography (CT) and cardiac magnetic resonance imaging
(MRI)are progressively utilized as diagnostictoolsin subsequent
clinical phases (6). Regarding CHD, particularly for prenatal or
postnatal monitoring, diagnoses are generally established
through ECHO evaluation when clinical suspicion emerges.
Nevertheless, timely diagnostic achievement depends upon
clinical awareness, available hospital infrastructure, and
accessibility of experienced specialists (7). Navigating these
diagnostic processes can prove time-intensive for both
patients and healthcare providers. Furthermore, the broad
spectrum of conditions and limitations in clinical decision
support systems for preoperative and postoperative care
contributes to increased clinician burden.

Through technological advancement, artificial intelligence
(Al) tools, particularly machine learning (ML) and deep
learning, have gained increasing prominence in medical
practice, reflecting their adoption across various scientific
disciplines. ML utilizes statistical modeling to identify patterns
within historical data, enabling computational systems to
predict future scenarios under comparable conditions.

The expanding implementation of Al has been enhanced
by workforce growth and accumulated expertise within this
domain. However, the application of by numerous physicians
and healthcare professionalsappears limited to conversational
Al systems. Nevertheless, with appropriate data integration
and system training, Al demonstrates substantial potential,
particularly in areas such as CHD, characterized by significant

disease variability and numerous diagnostic and therapeutic
approaches.

Contemporary literature regarding Al applications
primarily emphasizes developing diagnostic algorithms and
postoperative monitoring in CHD. The primary challenge
involves limited availability of large datasets, necessary for
creating Al algorithms in single-center studies, particularly
for rare conditions like CHD. Consequently, there is an urgent
need for multicenter studies or extended data collection
periods to accumulate sufficient information in this field.

Al is increasingly utilized in clinical applications, including
diagnosis, monitoring, and treatment of CHDs, contributing
to notable advances in pediatric cardiovascular medicine.
The capacity to enhance diagnostic accuracy of imaging
modalities such as cardiac MRI, echocardiography, cardiac CT
angiography, and electrocardiography through Al algorithms
enables more reliable and earlier detection of CHDs in both
prenatal and postnatal stages.

Recently developed Al-based models are being
implemented across various subspecialties within pediatric
cardiology, including screening  protocols, physical
examination findings evaluation, diagnostic process support,
medical image analysis, prognosis prediction, risk assessment,
and personalized patient-specific medical approaches. ML
techniques can also predict complication risk and progression,
offering opportunities for preventive interventions (8).

However, Al technology integration into comprehensive
care for children with CHD remains limited in the current
literature, thereby hindering the full realization of its
potential in this area. In complex diseases like CHD, the
diversity of treatment options, especially postoperative
approaches, can be simulated to create patient-specific
treatment plans, potentially reducing mortality and morbidity.
Furthermore, utilizing monitoring or wearable devices during
postoperative periods can facilitate arrhythmia detection and
the development of early warning systems for healthcare
personnel. Additionally, Al can assist by providing relevant
educational materials for early diagnosis and triage in rural
areas where specialist healthcare personnel are scarce.

This survey aims to explore challenges and opportunities
associated with integrating Al technologies into pediatric
cardiology. Addressing these points will help improve
healthcare quality and patient outcomes in pediatric
cardiology.

Types of Machine Learning Models

ML, a computer science subdiscipline, simulates human
cognitive processes through algorithms designed to learn
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from data inputs. As a fundamental component of big data
analytics, ML finds application in diverse fields including
pattern recognition, computer vision, and biomedical
research. ML enables computational systems to derive
insights from data, thereby providing predictive and
decision-making capabilities without dependence on explicit
programming protocols (9). This involves training algorithms
on comprehensive datasets to identify significant patterns
and iteratively improve performance metrics. Within medical
applications, ML algorithms emerge as essential tools, capable
of processing complex datasets to enhance diagnostic process
precision, personalize therapeutic strategies, and predict
patient prognoses (10,11).

ML is generally structured around three fundamental
paradigms: supervised, unsupervised, and reinforcement
learning models. Supervised learning involves training
algorithms on datasets where each input is paired with
a corresponding, predefined output label. This approach
enables models to infer patterns between input features
and expected outcomes, allowing for predictions on new,
unobserved instances. It is widely applied in predictive
tasks, particularly classification and regression problems.
While classification models categorize data into distinct
groups, regression models are used to predict values along a
continuous spectrum.

SUPERVISED
LEARNING

CLASSIFICATION
* Logistic Regression
* Decision Tree
* Random Forest
* Support Vector Machine (SVM)
* K-Nearest Neighbors (KNN)
* Naive Bayes
* Neural Networks

REGRESSION

* Linear Regression

* Polynomial Regression

* Ridge Regression

* Lasso Regression

* Elastic Net

* Support Vector Regression (SVR)
* Neural Networks

Figure 1. Types of machine learning

Common classification techniques comprise logistic
regression, decision trees, random forests, support vector
machines (SVM), K-nearest neighbors (K-NN), naive Bayes,
and artificial neural networks. In the context of regression,
frequently utilized models include linear and polynomial
regression, ridge, and lasso regression, elastic net, support
vector regression, and neural networks (12,13).

Unsupervised learning, by contrast,operatesondatalacking
explicit labels, with the goal of uncovering intrinsic structures
or relationships within the dataset. Key methodologies in
this category include clustering, dimensionality reduction,
and mining for association rules. Clustering methods—such
as K-means and hierarchical clustering—organize similar
data points based on feature resemblance. Meanwhile,
dimensionality reduction techniques like Principal Component
Analysis minimize the feature set while preserving essential
information content (14).

Reinforcement learning, the third paradigm, centers
on training an agent to take a series of actions within an
environment to optimize long-term cumulative rewards (15).

Figure 1 presents various types of ML models, and the
subsequent section elucidates commonly used predictive
models.

UNSUPERVISED
LEARNING

CLUSTERING
* K-Means Clustering
* Hierarchical Clustering
* DBSCAN (Density-Based Spatial
* Clustering of Applications with Noise)
* Gaussian Mixture Models (GMM)

DIMENSIONAL REDUCTION
* Principal Component Analysis (PCA)

* t-Distributed Stochastic Neighbor
Embedding (t-SNE)

* Linear Discriminant Analysis (LDA)
* Autoencoders
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Data Classification and Predictive Models

Outcome prediction, risk assessment, and customization of
treatment and follow-up for CHD patients now involve various
ML models and Al tools, each with distinct advantages and
limitations. A predictive model constitutes a mathematical
equation designed to forecast outcomes based on one or
more input variables. This tool employs data and algorithms
to predict outcomes. Given a defined set of measured attribute
values for an object x, the objective is to predict the unknown
value of another attribute y. The attribute y is designated as
the “output” or “response” variable, while the set x = {x -+, x}
constitutes the “input” or “predictor” variables. The essence
of predictive, also known as machine, learning is to construct
a prediction function f(x) that approximates y with minimal
error.

Data classification is a supervised learning method,
that assigns new observations to one of several predefined
categories, based on quantitative attribute Emser et al. (16).
Data classification can be approached through two methods:
one focuses on creating binary distinctions between two
classes, assigning labels of 0 or 1 to data items, while the
other aims to model P(y|x), providing both class labels and
class membership probabilities. SYM exemplify the former
approach, whereas logistic regression, decision trees, artificial
neural networks, and K-NN represent the latter, differing in
their data approximation methods.

SVM utilize statistical learning theory to estimate model
performance on new data by considering the characteristics
of the data and the performance on the training dataset
performance. They create boundaries between datasets hy
solving complex optimization problems. Different kernel
functions allow varying levels of model flexibility. Because
they are founded on statistical principles, these machines
have been studied extensively. They have demonstrated
performance comparable to or better than other ML
algorithms in medical studies. A disadvantage of SVM is that
classification results only show simple divisions, without
indicating class membership probabilities (17).

Logistic regression does not require a direct linear
relationship between the independent and dependent
variables themselves, but instead assumes linearity between
the log-odds of the outcome and the predictor variables (18).
This model is fundamentally based on the concept of odds in
the context of binary outcomes. When focusing on a specific
event, its odds are defined as the probability of occurrence
relative to the probability of non-occurrence. These odds are
often used to represent the likelihood of an event. The logistic
regression framework applies the natural logarithm of the

odds—referred to as the logit—as a linear function of the
predictor variables.

In the case of a single predictor variable, denoted as XXX,
the model can be written as:

I®(odds)=B0+B1X\In(\text{odds}) =
beta_1XIn(odds)=p0+p1X

where In®\InIn denotes the natural logarithm, B0\beta_0B0
is the intercept, and B1\beta_1p1 represents the coefficient
for XXX. The coefficient 1\beta_1B1 indicates the change in
the log-odds of the outcome for each one-unit increase in
XXX. Since the difference between logarithms corresponds to
the logarithm of a ratio, exponentiating p1\beta_1p1 provides
the odds ratio, reflecting how the odds change with a one-unit
increase in the predictor variable (19).

\beta_ 0 + \

Decision trees representa MLtechniquethat creates models
without requiring specific data requirements or assumptions
(20). Before examining decision trees, it is essential to establish
a foundation of terminologies. The root node serves as the
starting point, initiating dataset division based on features or
conditions. Decision nodes arise from subsequent root node
splitting, representing intermediate decisions within the tree
structure. Conversely, leaf nodes signify terminal points where
further division is infeasible, denoting final classifications or
outcomes. A sub-tree, analogous to a subgraph, constitutes a
specific section of the overall decision tree. Pruning involves
selective node removal to mitigate overfitting and enhance
model simplicity. Branches or sub-trees represent distinct
pathways of decisions and outcomes within the tree.

In hierarchical models such as decision trees, parent nodes
represent decision criteria or conditions, while child nodes
denote possible outcomes or subsequent decisions based on
those criteria. These structures are used to derive solutions by
analyzing previously resolved instances. The process typically
beginsbydividingthe dataset into two subsets: onefortraining,
where the tree is constructed, and one for testing, where the
accuracy of the resulting decisions is validated. Each instance
in the dataset is described by a set of attributes, one of which
is selected to guide the decision-making process. All input
attributes are assigned value categories—discrete attributes
with limited unique values, form their own categories, while
continuous or highly varied numeric attributes are grouped
into defined intervals.

Within the tree, attributes are represented as internal or
decision nodes, each branching into paths corresponding
to different value categories. The terminal nodes, or leaves,
of the tree indicate decision outcomes, effectively mapping
the predicted class for the decision attribute. To classify a
new, unseen instance, traversal begins at the root node and
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proceeds along branches that match the instance’s attribute
values, until a leaf node is reached, signifying the final
decision (21).

While binary classification (e.g., positive vs. negative)
is common, decision trees can also be extended to multi-
class scenarios to accommodate more complex decision
categories. Early theoretical foundations for decision trees
were introduced by Clopper and Pearson (22) in 1934 through
binary decision frameworks. However, practical applications
in MLgained momentum later. In 1984, Leo Breiman proposed
the Classification and Regression Tree algorithm, which
popularized concepts like binary splits and the Gini impurity
metric—both now standard in decision tree construction (23).
Subsequently, Quinlan (24,25,26) introduced the ID3
algorithm in 1986, followed by the improved (4.5 model in
1993. These innovations paved the way for the integration
of decision trees into ensemble learning approaches such as
random forests and boosting techniques, cementing their role
as foundational tools in modern ML.

The K-NN algorithm is another simple yet effective
classification technique. It assigns a class to a new data point
based on the majority class among its k closest neighbors
in the feature space. Unlike some models, K-NN lacks a
generalization phase, which may hinder interpretability.
However, it offers transparency by presenting specific
training instances that influenced a decision. This case-based
reasoning is often viewed favorably in medical contexts, as
it reflects clinical decision-making based on prior similar
experiences (27).

Naive and semi-naive Bayes methods are simpler and
faster than other classifiers (28). Although often outperformed
by models like logistic regression or random forests, certain
models remain popular for tasks such as text classification
and spam filtering, especially where computational resources
are limited (29). Naive and semi-naive Bayes methods
utilize conditional probability tables. The decisions made by
Bayesian classifiers, can be seen as aggregating information
gains. The formula used to calculate the information needed
to determine if something belongs to class C explains decisions
by combining information gains that either support or oppose
the class. This method works for semi-naive Bayes as well,
but it uses combined attribute/value pairs instead of simple
values. This information gain can be arranged in a table to
show the evidence for or against a decision (30).

The Application of Machine Learning Methods in
Congenital Heart Disease

ML models, and Al-driven methods are transforming
healthcare with innovative approaches to enhance diagnosis,

treatment, and management of illnesses, particularly
concerning pediatric cardiac conditions. This section explores
how Al can contribute to addressing these complex cardiac
issues. Furthermore, it examines how Al can improve
diagnostic accuracy and personalize treatments, ultimately
leading to enhanced outcomes for young patients.

Between 2011 and 2017, Qu et al. (31) conducted research
at a prominent cardiac center in China, comprehensively
examining unborn infants for potential cardiac defects via
ultrasonography. Suspicious cases underwent confirmation
through echocardiograms conducted by at least two
pediatric cardiology specialists. The study scrutinized a
total of 1,127 potential predictors of cardiac anomalies,
employing an Explainable Boosting Machine to forecast
defects and evaluating performance using Receiver Operating
Characteristic curves. Predictors were prioritized based on
their predictive contribution, and corresponding thresholds
were established. The study encompassed 5,390 mother-child
pairs, with the predictive model achieving a 76% accuracy rate.
Predominantly, the top 35 predictors comprised laboratory
test results, with only a single predictor originating from
questionnaire data. The model exhibited an overall accuracy
of 0.65, with sensitivity and specificity values of 0.74 and 0.65,
respectively. Maternal uric acid levels, glucose levels, and
blood clotting efficiency emerged as the most reliable and
influential predictors of cardiac defects. Threshold analysis
indicated that elevated uric acid levels, shortened activated
partial thromboplastin time, and elevated glucose levels were
the most salient predictors, correlating with 1.17-1.54 times,
increased risk of cardiac defects. Based on these findings,
the authors developed an online tool designed to facilitate
screening and prevention of cardiac defects.

Owens et al. (32) used data from the Statewide Planning
and Research Cooperative System spanning January 1, 2000,
to December 31, 2014, to investigate maternal delivery
hospitalizations and associated neonatal admissions among
women diagnosed with cardiomyopathy, adult congenital
heart disease (ACHD), pulmonary hypertension (PH), and
valvular heart disease. The study employed the International
Classification of Diseases, Ninth Revision, Clinical Modification,
to identify cases and capture maternal major adverse cardiac
events (MACE), neonatal clinical complications, and obstetric
outcomes. Outcomes were analyzed using multivariate logistic
regression.

Among the 2,284,044 delivery admissions reviewed,
3,871 involved women with cardiac conditions: 676 with
cardiomyopathy, 1,528 with valvular heart disease, 1,367 with
ACHD, and 300 with PH. Major cardiac events were reported in
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16.1% of those with heart disease, with the highest incidence
among patients with cardiomyopathy and PH. Neonatal
complications were also more frequent among offspring of
affected mothers, particularly in the cardiomyopathy and PH
subgroups. Women with heart disease showed a significantly
elevated risk of neonatal adverse outcomes, and this risk was
most pronounced in the cardiomyopathy and PH cohorts.
Independent predictors for neonatal complications included
preeclampsia, MACE, preexisting diabetes mellitus, and other
obstetric issues.

In another study, Xu et al. (33) retrospectively examined
pediatric patients diagnosed with infective endocarditis
between January 2010 and December 2021 at a single
institution. Data collected included demographics, clinical
symptoms, microbiological findings, ECHO data, pre-existing
cardiac conditions, and outcomes. The study included
90 children, with 60% having a history of heart disease.
Staphylococcus aureus emerged as the most commonly
isolated pathogen, observed more frequently in patients
without structural heart disease compared to those with
underlying heart conditions.

ECHO analysis identified vegetations in 88 patients: 41 on
the left side of the heart, 45 on the right, and 2 cases with
bilateral involvement. Right-sided vegetations were more
often seen in patients with heart disease, while left-sided
vegetations predominated in those without. Embolic events
were documented in 25 cases, with a higher incidence in
the non-heart disease group. Spontaneous resolution of
vegetations occurred in nine patients, and four patients died
during hospitalization. Logistic regression indicated that
the absence of structural heart disease and the presence of
moderate to severe valvular dysfunction were independent
risk factors for embolic complications.

Babi¢ et al.(34) examined cardiovascular disease,
encompassing a diverse array of conditions that impair
heart and vascular function, including coronary artery
disease, arrhythmias, and congenital or acquired structural
abnormalities. The term is frequently associated with vascular
obstructions or stenoses that may precipitate acute events
such as heart attacks, angina, or cerebrovascular incidents. In
their study, three datasets were analyzed: the Heart Disease
Database, the South African Heart Disease Dataset, and
the Z-Alizadeh Sani Dataset. The team applied various ML
models, specifically Decision Trees, naive Bayes, SVM, and
Neural Networks, for predictive analytics, supplemented by
descriptive methods based on rule-based association and
decision logic.

Model performance was evaluated using data from
multiple sources. For the Cleveland, Hungary, Switzerland,

and Long Beach VA datasets, classification accuracies were
reported as 88.09% for Decision Trees, 86.76% for naive Bayes,
88.53% for SVM, and 89.93% for Neural Networks. Model
accuracy rates on the South African dataset were slightly
lower: Decision Trees achieved 73.87%, naive Bayes 71.17%,
SVM 73.70%, and Neural Networks 68.48%. With respect to
the Z-Alizadeh Sani dataset, the results indicated accuracies
of 85.38% for Decision Trees, 83.33% for naive Bayes, 86.67%
for SVM, and 86.32% for Neural Networks. Based on these
findings, the researchers concluded that the implemented
models vyielded robust and consistent outcomes, often
matching or surpassing those found in comparable studies.

In a separate investigation, Pachiyannan et al. (35)
introduced a novel ML-based framework designed to reduce
neonatal mortality in cases of CHD. The model processes
infant medical records to pinpoint critical mortality risk
factors, thereby supporting timely clinical intervention and
individualized care strategies for neonates at elevated risk. By
integrating maternal health history and prenatal indicators,
the diagnostic tool facilitates accurate evaluation of newborns
affected by CHD. The Cardiac Deep Learning Model yielded
encouraging performance metrics, demonstrating a sensitivity
of 91.74%, specificity of 92.65%, a positive predictive value of
90.85%, negative predictive value of 55.62%, and a miss rate
of 91.03%. These findings imply that the model may serve as
a valuable clinical resource, equipping healthcare providers
with decision support capabilities to mitigate CHD-related
neonatal mortality and enhance treatment outcomes.

Lee et al. (36) carried out a retrospective analysis involving
ECG data from 1,035 pediatric patients aged under five
at Chang Gung Memorial Hospital in Taoyuan, Taiwan.
Based on ECG interpretations, patients were grouped into
five diagnostic categories: normal cardiac anatomy, non-
significant right heart disease, significant right heart disease,
non-significant left heart disease, and significant left heart
disease. ECG signals underwent preprocessing via continuous
wavelet transformation and were then divided into two-
second segments to augment the dataset. Following this,
transfer learning was implemented using three pre-trained
deep learning architectures: ResNet-18, InceptionResNet-V2,
and NasNetMobile. These models were assessed using
standard classification metrics, including accuracy, sensitivity,
specificity, F1 score, and the area under the receiver operating
characteristic curve (AUC-ROC).

Among the evaluated models, ResNet-18 achieved the
best overall results for identifying clinically significant CHD,
reaching an accuracy of 73.9%, F1 score of 75.8%, and AUC
of 81.0%. While InceptionResNet-V2 demonstrated strong
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performance in detecting left-sided heart abnormalities, it
required significantly more computational resources.

Notably, the Al models outperformed pediatric
cardiologists’ interpretations of conventional ECGs. The
authors highlighted the potential of Al-enhanced ECG analysis
asavaluable adjunct tool in CHD screening for young children,
with ResNet-18 emerging as a particularly effective model.

Niyogi et al. (37) examined the transformative role of Al in
the diagnosis, treatment, and lifelong management of CHD.
The study addressed recent progress in prenatal detection,
postnatal intervention, and chronic monitoring, while also
recognizing limitations such as the lack of standardized
datasets and ethical complexities. Notable advancements
include the use of Al in fetal echocardiography and genetic
screening, facilitating more precise prenatal risk assessment.
Additionally, the integration of Al into imaging diagnostics
has improved classification and severity evaluation of
CHD subtypes. The authors also emphasized the role of Al-
driven clinical decision support systems, which contribute to
personalized care plans and better prognostic evaluations.
Remote Al monitoring tools were also noted for their potential
to detect complications early, supporting long-term patient
management.

Chen et al.(38) introduced a deep learning—based
diagnostic system, Congenital Heart Disease diagnosis via
Electrocardiogram (CHDAECG), designed for the detection
of congenital heart defects using pediatric ECGs. This
approach combines automated feature extraction via wavelet
transformation with selected expert-identified features.
Trained on a dataset of 65,869 cases, CHDAECG achieved a
ROC-AUC of 0.915 and a specificity of 0.881 on a real-world test
set of 12,000 cases. On two external validation datasets (7,137
and 8,121 cases), the model yielded ROC-AUC scores of 0.917
and 0.907, and specificities of 0.937 and 0.907, respectively.
The system outperformed cardiologists in CHD detection,
with automatically extracted features contributing more
significantly to model performance than manually selected
ones. These findings highlight the promise of ECG-based deep
learning for pediatric CHD screening, offering insights beyond
conventional diagnostic approaches.

Conclusion

The studies reviewed underscore the significant potential
of Al to revolutionize cardiovascular medicine by enhancing
diagnostic precision, enabling personalized treatment
approaches, and ultimately improving patient outcomes. Al
algorithms have demonstrated their capability to analyze
intricate datasets derived from electrocardiograms and

advanced imaging modalities. This facilitates early and
accurate detection of critical cardiovascular conditions,
such as coronary heart disease and congenital heart defects,
often surpassing the performance of conventional diagnostic
techniques.

Moreover, decision support systems powered by Al offer
considerable potential in personalizing treatment plans
and enhancing the precision of outcome predictions. The
integration of Al into remote patient monitoring facilitates
the early identification of clinical complications, allowing
for prompt intervention and better long-term disease
management. Collectively, these technological advancements
are poised to substantially influence healthcare delivery
by providing clinicians with sophisticated tools to reduce
cardiovascular-related mortality, improve patient outcomes,
and support the timely and customized care of individuals at
elevated risk.

Future research should focus on standardizing datasets,
addressing ethical considerations, and validating Al models
across diverse populations to fully realize the transformative
potential of Al in cardiovascular care.
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